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Patterson Function Interpretation for Molecules Containing, Planar Groups 
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(Received 25 October 1963) 

A procedure for interpreting the Patterson function of a molecular crystal which contains planar 
groups of atoms is described, and has been programmed for EDSAC II. Examples of its practical 
use for structure determination are mentioned. The possibility of more general application of a 
similar 'sum function' method is discussed, and such methods are compared with a 'minimum 
function' method originated by :Nordman & Nakatsu. 

1. Introduction 

At the beginning of the determinat ion of the structure 
of a molecular  crystal  a good deal  is often known 
about  the a r rangement  in space of consti tuent  groups 
of atoms. This i rdormation can obviously be useful 
in  in terpret ing the Pat terson function. Nordman & 
Nakatsu  (1963) have recent ly described a procedure 
in  which three programs for an IBM 7090 computer  
are employed in sequence to determine the angular  
orientat ion of a rigid group of known internal  
geometry, the location of this  group (in its known 
orientation) relat ive to symmetry-re la ted  groups in 
the same uni t  cell, and f ina l ly  the determinat ion of 
the positions of the remaining atoms of the molecule. 
Their  method makes  extensive use of the m i n i m u m  
funct ion (Buerger, 1959). We have independent ly  
devised a Pat terson- interpreta t ion program which is 
less general  in  tha t  i t  can be used only when a con- 
siderable proportion of the atoms of the molecule 
lie in a plane. A pre l iminary  account of this method 
has a l ready been given at the Munich Symposium 
(Tollin, 1962). This method is inherent ly  simpler  since 
only a two-dimensional  funct ion has to be evaluated 
in  the f irst  stage of the procedure, and  because it  
is based on a sum funct ion ra ther  t han  a m i n i m u m  
funct ion it  does not require storage in the computer  
of the complete Pat terson funct ion at any  stage, 
but  can be evaluated as a Fourier  series. The method 
has been programmed for EDSAC II. In  § 3 we discuss 
the possibi l i ty  of its extension to non-planar  groups. 

2. D e s c r i p t i o n  of the method 

The orientat ion of the p lanar  group is described by 
0, ~, the spherical  polar angles which define the 
normal  to the group with respect to the crystal  axes, 
and ~, the az imutha l  angle which defines the orienta- 
t ion of a l ine in  the group with respect to a reference 
l ine in  the plane. 

Obviously the vectors between atoms of the group 
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lie in a paral lel  plane through the origin of the Pat ter-  
son function. If a disc whose radius is not much greater 
t han  the m a x i m u m  dimension of the molecule is 
placed with its centre at the origin, then  the integral  
of the Pat terson funct ion over the surface of the disc 
will have a large, and in favourable circumstances 
a max imum,  value when 0, ~ of the disc coincide with 
0, q9 of the p lanar  group. Wri t ing the Pat terson func- 
t ion as 

P(r)  = ~ IF(h)l 2 cos 2 ~ h . r  
h 

and defining a function 

t(r) = 1 on the disc 

= 0 elsewhere, 
we expect 

J(O, cp) = P(r)t(r)dv 
y 

to be large when the disc is correctly oriented. Apar t  
from constant factors, J(O, cp) is identical  with 

I(0, q~) = _~lF(h)12T(h) 
h 

where T is the Fourier  t ransform of t, and IF[ 2 is 
the Fourier  t ransform of P. From the defini t ion of t 
it  follows tha t  

I(0, of) = ~,  [F(h)122~R 2 J1 (2~RS) (1) 
h 2xeRS 

where R is the radius of the disc and S is the per- 
pendicular  distance of the reciprocal latt ice point  h 
~rom the normal  to the disc. 

I(0, q~) has a value at  every point  on the surface 
of a sphere and is convenient ly represented on a map  
which is a projection of this  surface. In  practice the 
most convenient  projection was found to be the 
Sanson-Flamsteed  sinusoidal equal area projection 
(Steers, 1949) which was chosen for its ease of con- 
struction, i ts equal-area property,  and because i t  
allows a l inear  interpolat ion procedure to be used 
to locate the position of a peak between sampl ing 
points, with reasonable accuracy. 
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An EDSAC II program for the evaluation of I(09o) 
from equation (1) has been written and is described 
in some detail elsewhere (Tollin, 1963). Several tricks 
were used to reduce computing time, such as looking 
up Jl(x)/x in a table constructed so that  the value 
of S ~ is used to determine the entry in the table used. 
This avoids calculation of Jl(x) and extracting a 
square root, since it is most convenient to calculate 
S 2 from h and 0 and 9o. Four separate values of IF(h)[ 9 
were packed in each register, and S 2 was expressed 
as a polynomial in the most frequently varying of 
h, k and l, so that  as the program moves from one 
reciprocal lattice point to the next, the minimum 
amount of computation is required to find the new 
value of S 2. The angle 0 was changed in steps of 2 °, 
and taking 

Interval in 9o= 180/0 

gave a fairly uniform density of sampling points. 
For crystals of monoclinic symmetry the range to be 
covered is 

0 _ < 0 _  90 ° 

0 _< 9o _< 180 ° 

and this is reduced for crystals of higher symmetry. 
Tests of the program were made with the data for 

naphthalene (Abrahams, Robertson & White, 1949). 
I t  was found to be advantageous to 'sharpen' the 
data so that  the average value of I.FI 2 was approx- 
imately constant in reciprocal space, and to take 
R = 5  /~, approximately the maximum dimension of 
the molecule. Fig. l(a) shows the map obtained with 
unsharpened IFI ~ values and R--5  A; the largest peak 
had its position in error by not more than 5 ° in each 
coordinate. However, in Fig. l(b) is shown the map 
obtained by using sharpened IF] 2 values and R=5  A 
for the important range of 0; in this case the peak 
maximum coincides with the position of the plane 
normal to within less than 1 °. From sharpened data 
for the unknown structure of deoxyadenosine the 
map shown in Fig. 2 was obtained with R--2.5 A. 
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Fig. 1. Naphtha lene .  (a) I(Ocf)/~=5 A unsha rpened  data .  
(b) I(O~) for 0 > 70 °, R = 5 A, sharpened  data .  

The computing time was about 3 hours. The largest 
peak which corresponds to the orientation of the 
purine ring (as was subsequently verified) was in the 
same position for R = 5/~. 
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Fig. 2. Deoxyadenos ine .  I(Ocfl) calcula ted  wi th  sharpened  
d a t a  and  R = 2.5 A. 

The evaluation and inspection of I(0, 9O) is the first 
stage of the procedure. The second stage is the evalua- 
tion of a plane section of the Patterson function 
through the origin in the orientation defined by the 
largest peak of I(0, 9O). (If this section could not be 
interpreted, sections corresponding to other peaks 
would be evaluated.) Interpretation of the section 
consists in superposing on it the vector set of the 
planar group of atoms, and rotating this until a good 
fit is obtained. (If the molecular dimensions were 
accurately known this step could be programmed so 
that  the plane section was not printed out; this could 
lead to difficulties if the correct peak of I(0, 9O) was 
not chosen initially.) This determines the angle F. 

In practice two unknown structures have so far 
been determined by this method, ninhydrin (C9H804) 
in which 11 atoms (other than hydrogen) lie in a plane 
(Tollin, 1963), and the more difficult structure of 
deoxyadenosine (CzoH18NsOs.H20)in which 11 atoms 
lie in a plane (Sutor, Tollin & Watson, 1964). In both 
instances the space group is P2z and the procedure 
adopted in the final stages was as follows. Let the 
positions of the n atoms of the planar group, in the 
correct orientation, with one of them taken as origin, 
be rs= (xjyjzs). The rs are therefore all known quan- 
tities. The sum function 

Sn(r) ---- ~" [-~'(h)12{~ " cos 2xeh.rj cos 2 ~ h . r  
h i 

+ ~ sin 2zh.  rssin 2~h. r} 
i 

was evaluated and printed out. I t  was then inspected 
for a group of n peaks having coordinates 
(xs + 2x0, ys + ½, zs + 2z0) with identical values of (x0, z0), 
which determines the position of the 21 axis. The 
determination of the coordinates of the remaining 
atoms was then made by the usual process of Fourier 
refinement. Further details are given in the accounts 
of the individual structures (Tollin, 1963 ; Sutor, Tollin 
& Watson, 1964). 
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3.  D i s c u s s i o n  

The procedure described above can be generalized 
in several respects but it becomes questionable 
whether in the general case it has any advantages 
over the method of Nordman & Nakatsu. When the 
known group of atoms is not planar, a function of- 
three variables, I(0, qD, y~), must be evaluated as the 
first step. The function analogous to the one we have 
used is 

_,~ P ( r j -  rj,) 
j , j ' = l  

where r], ~ function of (0, ~, y~), is the coordinate of 
one atom of the group relative to an arbitrary origin. 
This sum function can be expressed as a three- 
dimensional Fourier series in the variables (0, qp, ~p). 
The expression is however so cumbersome that it is 
doubtful whether it could be evaluated more rapidly 
as a Fourier series, which requires rapid access to 
a table of about 10a numbers (the values of IFI2), 
than could be done directly from a table of values of 
the Patterson function, although this would require 
rapid access to a table of about 105 numbers. For 
computers with large fast-access stores it seems clear 
that  the latter method is more efficient, in which case 
it is certainly better to record against each value of 
(0, q~, v2) the minimum value of P ( r j - r¢ , )  rather than 
the sum. An exception in favour of the sum function 
might be made if the dimensions of the known group 
were not accurately known. 

A sum function might find more application at the 
stage where the rigid group is to be located relative 
to symmetry-related groups in the same unit cell, 
since the locating function can be expressed as a 
relatively simple Fourier series. A procedure analogous 
to that  which was used in the structure determinations 
of ninhydrin and deoxyadenosine is as follows. 

Let rj be the coordinate of one of the n atoms of 
the (correctly oriented) group relative to an arbitrary 
origin whose position in the unit cell is ro. Let T~ be 
the i th symmetry operation of the space group and 
Z the number of equivalent positions. For example 
for space group P21, T1 (xyz) = xyz, T2 (xyz) = 

+1 - x, y ~, - z ,  and Z =2. The sum function obtained 
by setting down the origin of the Patterson function 
at each of n sites in each of the first Z - 1  equivalent 
positions is 

Z - - 1  7t 

N~z-1)(r) = ~ ~ P ( r -  T~(r~ + ro)). 
i = 1  j = l  

This expression is now summed over the remaining 
n points for which r=Tz ( r j ,+ ro )  to give a locating 
function 

n Z- -X n 

Q(r0) = 2 2 ~ P ( T z ( r j , + r o ) - T i ( r j + r o ) )  
H=1i=1~'=1 

n Z - - 1  n 

= ~ Z Z ~ IF(h)]2 exp [2uih. {T~(rj+ r0) 
h i'=1 i= l  i=1 

-- Tz(rj, + r0)}] (2) 

which is a Fourier series in the variable r0 and should 
have a peak at the correct value of r0. When r0 has 
its correct value, the value of Q(r0) is simply the 
sum of the values of the Patterson function at positions 
which correspond to vectors between atoms in different 
groups. As an example, when the space group is P2x, 
equation (2) reduces to 

Q(x0, zo) = ~ ( -  1)kJF(hkl)l 2 ~ cos 2zr(h(x~+x~,+2x0) 
hkl j,  j ' =  1 

+ k(y¢-yj , )  + l(zj + z¢, + 2Zo)) . 
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